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The front yard makes a powerful visual statement about the
occupants of the residence. As visible statements, yards are likely
to induce a behavioral response on the part of neighboring
residents. As an example, residents may strive to keep their
yard as green and lush as their neighbors. For Kelowna, British
Columbia, a highly significant positive spatial lag for summer
water use implies some degree of spatial emulation in water using
behavior. Other variables such as lot size, building size, assessed
value, presence of a pool, etc. impact on water use as expected. The
presence of a spatial lag implies a spatial multiplier for water
saving innovations. If local water managers and policy makers can
influence the spatial pattern of water saving innovations, they may be
able to increase the size of the multiplier effect. Similar spatial policies
may also be applicable to other socially influenced behaviors that
leave a spatial signature, such as protecting ecologically significant
habitats in urban areas.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

British Columbia's Okanagan Valley is one of the driest watersheds in Canada [39]. Over 100,000
residents living in its largest city, Kelowna, are supplied by five different water providers (see Fig. 1).
The providers have different pricing structures and engage in a mixture of individual and cooperative
. All rights reserved.
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Fig. 1. City of Kelowna Water Providers. Glenmore Ellison Improvement District (GEID), the City of Kelowna (CITY), Rutland
Waterworks Department (RWD), Black Mountain Irrigation District (BMID) and South East Kelowna Irrigation District (SEKID).
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efforts to encourage water conservation. Of the five, only CITY and RWD charge by volume, and these
two price differently.

Okanagan summers are hot and dry, with peak summer water use (largely for landscaping) about
five times winter use. Fig. 2 plots average monthly residential water use (1998–2008) for all single
family households and for the top and bottom quartiles of summer water use. For the top quartile,
peak summer use is about eight times average winter use, while for the bottom quartile the factor is
around two. An important water conservation challenge is containing the summer peak. Therefore,
finding those factors that contribute to water use, particularly outdoor water use, can help identify
strategies to encourage greater water conservation.

By visual inspection, membership in water use quartiles has a strong spatial pattern (Fig. 3). This
paper explores the determinants of this spatial pattern, and discusses policy implications of the
results. It is among the first to use spatial econometric methods to test for the presence of spatial
correlation in water use among residential water consumers. Much of the variation in water use is due
to differences in home age, home size, lot size and similar features which are themselves spatially
correlated. This correlation stems in part from the history of development, where neighborhood
features largely reflect zoning laws, building codes and population tastes dominant when development
took place. However, after controlling for these effects, there remains a strong spatial correlation for
summer water use.

While the data cannot conclusively separate the influence of unobserved spatial shocks from that
of imitation behavior, the presence of substantial imitation creates a policy opportunity. Spatial
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Fig. 2. Monthly average (1998–2008) household water consumption, for all households and for high and low summer use
quartiles. Bands identify two standard deviations.
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Fig. 3. Spatial distribution of Kelowna households with water consumption data. In each panel, households are divided into
water consumption quartiles. For the winter panel, quartiles formed by sorting on average monthly consumption for December,
January and February. For the summer panel, sorting on average monthly consumption for June, July and August.
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correlation means that water saving innovations have a ‘cascade’ effect, with the total impact of
that cascade depending on the distribution of the initial innovations. We show that careful choice of
the location of these innovations can significantly impact on the total spillover water savings. To the
best of our knowledge, this is the first analysis to examine spatially optimizing water conservation
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interventions and further to examine the implications on the optimal choice of having incomplete
information about the spatial process.

The remainder of the paper is organized as follows. In the next section related literature is
reviewed, highlighting that spatial methods have only seen limited application to residential water
consumption. We then present the spatial econometric model and discuss its application. After this
we describe the data, present a selection of summary statistics, and discuss the expected relationships.
Next we present the results. This is followed by a simple model that shows how spillover water savings
operate, where the scale of the spillover is chosen to reflect the estimation results. We follow this by a
discussion and conclusion.
2. Background

Residential water demand has been well studied (see [6] and more recently [44] for review
articles). This research consistently finds that the demand for water is strongly price inelastic. Where
dynamic effects are studied, that price elasticity increases as water users have time to adjust. Other
common findings include that water use increases with increasing income (sometimes proxied by
property value), household size and water using features like pools and bathrooms. One interesting
meta-analysis involving the results of 64 previous studies, Dalhuisen et al. [12], reports that price
elasticity tends to be different (possibly higher) in the arid western US, compared to other areas.
However, this result is highly sensitive to the functional form used. This does suggest that outdoor
water use, which dominates in the arid west, may be different from indoor use. However, beyond
considering differences between regions, this work has not considered space.

Some research that considers water use rather than water demand has found evidence of spatial
patterns. Using data for 6788 households in Melbourne, Australia, Aitken et al. [1] find that in addition
to assessed value and number of occupants, water use can also be clustered into similar spatial
neighborhoods. For Adelaide, Australia, Troy and Holloway [41] also find evidence for area effects.
However, neither of these use spatial modeling. Wentz and Gober [43] use geographically weighted
regression (GWR) to examine household water use for Phoenix, Arizona. The usual variables, household
size, lot size, having a pool, landscaping, etc. have the usual effects. GWR extends regression models by
allowing parameters to smoothly change over space. The GWR fit is superior to the fit with fixed
parameters, suggesting that the way households respond to the exogenous variables varies over space and
is similar for those closer together. Franczyk and Chang [13] use spatial regression methods to fit a model
for county level water use in Oregon state, finding that models with spatial lag and spatial error effects
perform better than a simple OLS model. Ramachandran [36] uses tests for spatial dependence (e.g.
Moran's I) to test for household level spatial water use patterns during water restrictions for Ipswitch,
Massachusetts. Some weak evidence for a neighborhood effect is found, particularly when disaggregated
by lot size. However, an explicit spatial regression model is not used.

Landscaping is an important determinant of outdoor residential water use, and spatial landscaping
patterns will induce spatial water use patterns. Landscaping choices are also public statements, and
therefore will reflect complex social influences (for example [18,42,20,14], and references therein),
which may or may not generate spatial patterns [19]. Using a detailed inventory of front yard landscaping
features for a Montreal neighborhood, Zmyslony and Gagnon [46] found highly significant spatial
clustering. In a slightly later study [47], they also find a correlation between landscaping choices and
building features. Henderson et al. [16] also find clustering of lawn alternatives in Guelph, Ontario, but
suggest this may be a response to physical features of the yard. In contrast, Kirkpatrick et al. [19] find no
evidence of spatial correlation in landscaping choices for Hobart, Tasmania, Australia. Using a contingent
ranking style approach, Iverson et al. [17] find that individual preferences are dominated by neighborhood
characteristics, suggesting that efforts to change landscaping choices should focus at the neighborhood
level.

Recognizing that place matters is not particularly novel, and modern computational technologies
have enabled solving models that were previously impossible. There are now a number of surveys that
can be consulted to see the variety of models which have been analyzed using spatial methods
[4,5,21]. Spatial econometric models attempt to empirically account for the presence of network



J. (John) Janmaat / Water Resources and Economics 1 (2013) 3–19 7
interactions between economic agents [11]. Hedonic property models are now as incomplete without
a test for spatial correlation as time series regressions are without a test for autocorrelation. Some
recent examples with a focus on environmental issues include the following. Zabel and Guignet [45]
examine the impact of leaking underground petroleum storage on property prices, finding that
publicized sites have a significant impact. Nelson [27] finds a significant premium for lakefront and ski
hill access for properties near Deep Creek Lake, Maryland. Pandit et al. [30] show that in Perth,
Australia, broad leaf trees along the street contribute significantly to property values, while trees
elsewhere on the lot do not do so. They argue that planting broad leaf trees along streets can
contribute to social welfare. Netusil [28] show that publicly owned streams and wetlands command a
significantly larger price premium for closer properties than do those privately owned, possibly due to
uncertainty about future land uses. In studies such as these spatial effects are commonly found.
However, the impact varies and typically including spatial lag and spatial error terms is intended to
refine parameter estimates. In what follows we estimate one of the first spatial econometric models
for household level water consumption. We also demonstrate that the presence of a neighbor effect
implies that spatially explicit policies to encourage water conservation can be more cost effective than
those which are not.
3. Model

The theory and estimation of spatial econometrics have been well documented elsewhere
(with Anselin [2] among the first), and readers are referred to sources such as LeSage and Pace [21] for
a more rigorous presentation.

The basic ordinary least squares model is

y¼ Xβþ u ð1Þ
where for our purposes y is a vector of average summer water use, X is a matrix of independent
variables, β is a vector of coefficients, and u is a disturbance vector. Spatial effects can be incorporated
both as spatially lagged dependent variable effects and as a spatially autoregressive disturbance
vector. With both of these effects, the regression model becomes

y¼ ρW1y þ Xβþ u ð2Þ

u¼ λW2uþ ϵ ð3Þ
where W1 and W2 are spatial weights matrices and ϵ is an independently and identically distributed
(iid) disturbance vector. When W1 ¼ 0 and W2≠0, then this becomes a spatial autoregressive (SAR)
model, while when W1≠0 and W2 ¼ 0 it is a spatial lag (LAG) model. If both W1 and W2 are nonzero,
then it is a spatial autoregressive moving average (SARMA) model. The spatial weights matrices W1

and W2 incorporate the spatial connections between the observations. While in principle W1 and W2

can be different, for what follows we assume they are equal.
The spatial regression model (Eqs. (2) and (3)) is essentially a system of simultaneous equations

with an autocorrelated error. The reduced form for Eq. (2) is

y¼ ðI−ρWÞ−1Xβþ ðI−ρWÞ−1u ð4Þ
Eliminating u using its definition in Eq. (3) yields

y¼ ðI−ρWÞ−1Xβþ ðI−ρWÞ−1ðI−λWÞ−1ϵ ð5Þ
With sufficient information or assumptions about the distribution of ϵ, maximum likelihood (ML) can
be applied. However, ML solvers can have difficulty in converging. Generalized method of moments
(GMM) solvers are typically more stable, and do not require the same distributional assumptions that
ML does.

The matrix W represents the relationship between neighbors. For the present problem, W should
capture the relationships that affect ones decision, with the size of the weight reflecting the strength
of the influence. In our case, we expect that residents observe their neighbor's yards, and that their
own behavior is affected. The weights matrix will therefore show a greater influence from closer
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neighbors. These relationships are difficult to observe and beyond this ad-hock description there is no
consistent theory to predict relationship structures. Thus, empirical researchers are frequently left to
simply compare alternatives [33]. Estimates were generated for several k nearest neighbor structures,
sphere of influence, and a range of inverse distance forms (detailed results available on request).
We will use an inverse distance squared weighting matrix with a 100 m distance bound for our
estimations, which was chosen through a somewhat ad-hoc examination of significance tests and
examination of parameter estimates.

Estimation procedures typically require a weights matrix that is row standardized. This enables
solutions to be found, but in effect imposes the assumption that the total influence of all ones
neighbors is the same. More neighbors, each has less influence, but the total influence is unchanged.
This assumption implies that each person is embedded in a network where total link strength is the
same, irrespective of the number of links. For our predictions we examine the impact of a change to
this assumption.

Finally, as pointed out by Manski ([25], see also [9]), there is an identification problem in linear
models of social influence. Manski described three elements that can contribute to an observed
neighbor relationship. Local correlations may be due to contextual factors, a result of unobserved
correlations between neighbors, and an endogenous peer effect. Separating the endogenous peer
effect from the contextual and correlated effects relies on knowing the form of the social network and
having sufficient individual and neighborhood information to identify each effect. For the cross
sectional data used in this paper, neighbor average values for the exogenous variables can capture the
contextual effect [15]. The spatial Durbin model,

y¼ ρWy þ XβþWXγ þ u

provides a way to account for at least the contextual effect, under the assumption that the relevant
contextual variables are in X. We find that spatial lag effects remain when the Durbin model is fit by
ML, but are unable to solve the Durbin model with GMM.
4. Data

Water use records were provided by the city of Kelowna, for those served by the city water utility
(CITY). Supplemental data was generated using GIS layers also provided by the city, and from assessment
authority records purchased from LandcorTM, the marketing arm of the British Columbia Assessment
Authority. The data for which city water records, GIS data and assessment data could be matched included
11,289 observations. When restricted to observations with at least four neighbors within 100 m, 10,976
observations remained. Table 1 reports summary statistics for these 10,976 observations.

For the sample, mean summer (June, July, August) water use is 3.89 times mean winter (December,
January, February) water use. There are extreme outliers in all seasons. We use mean monthly summer
water use as the dependent variable in the regressions reported below.

Total assessed value ranges from around $200,000–$8.6 million. The average of $577,200
emphasizes that the city water utility does not deliver water to many low income people with
single detached homes. The sample does not include households supplied by the other four water
providers. As these tend to be further from the lake and/or have a more working class history, lower
value single family homes are more likely in these other areas. In the regressions we include assessed
value, which we assume is a proxy for income, and as such expect water use to be increasing in
assessed value, likely at a decreasing rate.

The average Kelowna house is about 31 years old, occupies a lot that is almost 0.1 ha in area, with
a building that has about 203 m2 of living space (2185 ft2). We expect summer water use to be
increasing in lot size, as there is more area to irrigate. Indoor water use is expected to increase with
the area of living space and with age. The latter effect may eventually decrease, as the oldest homes
are more likely to be renovated, and through renovation have water using fixtures updated [26].

Number of bedrooms and bathrooms, and presence of a pool, are all expected to increase water
use. More bedrooms likely indicates more occupants, and more bathrooms mean more water using
fixtures. Pools are water using, and therefore having one should result in more water being used.



Table 1
Summary table. The coefficient of variation is calculated as the standard deviation divided by the mean.

Variable Min. Mean Max. Coefficient of variation

Annual water use (m3/mo) 1.083 38.36 329.20 0.532
Summer water use (m3/mo) 1.000 73.51 788.70 0.658
Winter water use (m3/mo) 1.000 18.89 478.70 0.718
Total assessment ($,000) 199,400 577,200 8,653,000 0.657
Age (years) 1 30.83 95 0.570
Lot size (m2) 165.2 974.6 7807.0 0.571
Finished area (m2) 40.88 202.99 955.97 0.410
Slope (deg.) 0.0003 3.382 32.55 1.282
Elevation (m) 342.3 392.3 616.0 0.167
Bedrooms 1 3.527 12
Bathrooms 1 2.471 6
Pool 0.1035
Prime view 0.0823
Near agriculture ðo100 mÞ 0.0343
Near GEID ðo100 mÞ 0.0212
North aspect (−451 to 451) 0.1491
East aspect (451–1351) 0.1233
South aspect (1351–2251) 0.2509
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Having a prime view should have no direct relationship with water use. However, it may capture
effects not well captured by assessed value, slope, elevation or aspect. We have no specific expectation
for the impact on water use of prime view.

Water use is expected to decrease in slope, as lots that are more sloped likely have less lawn and
more natural space, the latter requiring less water. The effect of elevation is uncertain. All else equal,
increasing elevation reduces temperature, and thereby should reduce water use. However, in Kelowna
the lowest elevation properties are on flat land near the lake, where the water table is high and there
is a cooling effect. Therefore, the sign for elevation is ambiguous. Given that Kelowna is at 49.881 north
latitude, lots with a more southerly aspect are expected to use more water.

Finally, two additional neighbor influences are considered. Agriculture in the Okanagan requires
irrigation, and therefore properties that are close to agriculture are more likely to see regular
watering. We expect that this will encourage households to also irrigate, increasing water use.
Similarly, properties near the boundary with GEID may be influenced by the fact that GEID customers
pay a flat rate for water. Thus, if zero marginal cost means that GEID customers use more water
outdoors, and if Kelowna residents are influenced to be like their neighbors, then water use would
increase as we near the boundary with GEID.

5. Results

To get to a discussion of spatially explicit residential water conservation policy, the analysis
proceeds through a sequence of steps. First, a set of tests are presented that establish there is a strong
case for spatial structure in the data. Using these test results, we argue that it is reasonable to assume
an inverse squared distance spatial weights matrix with a 100 m distance bound. Next, using this
spatial weights matrix we estimate a set of regression models, and demonstrate that there is strong
evidence for a spatial lag process in the data. We then construct a simple example to illustrate that
when a spatial lag process similar to that found in the data exists, spillover water savings can
be maximized by careful choice of the location of water saving innovations. Finally, we explore how
sensitive this optimal choice is to incomplete knowledge about the spatial process.

5.1. Spatial structure

Table 2 reports spatial structure tests on the residuals of an OLS regression of summer water use
for nine inverse distance spatial weights matrices. Moran's I was strongly significant for all cases and



Table 2
Spatial structure tests. Test statistic ðθÞ and significance level reported for robust tests for spatial error, spatial lag, and both
spatial error and spatial lag (SARMA). Estimates of spatial lag ðλÞ and spatial error ðρÞ parameters reported as appropriate.
Inverse distance spatial weights, with square root, linear and square of distance, distance bound at 50, 100 and 200 m.

Weights Spatial error Spatial lag SARMA

θ P λ θ P ρ θ P ρ λ

1=
ffiffiffiffiffiffiffiffiffi
d200

p
597.4 0.0000 0.612 263.9 0.0000 0.477 1884.3 0.0000 0.467 0.200

1=d200 343.0 0.0000 0.573 251.3 0.0000 0.487 1663.4 0.0000 0.482 0.112

1=d2200 0.1 0.7432 0.360 272.4 0.0000 0.479 899.9 0.0000 0.492 −0.187

1=
ffiffiffiffiffiffiffiffiffi
d100

p
38.2 0.0000 0.407 245.8 0.0000 0.467 986.5 0.0000 0.474 −0.110

1=d100 12.9 0.0003 0.382 229.7 0.0000 0.475 929.3 0.0000 0.484 −0.157

1=d2100 11.4 0.0007 0.279 251.9 0.0000 0.475 680.4 0.0000 0.497 −0.273

1=
ffiffiffiffiffiffiffi
d50

p
1.3 0.2536 0.228 54.8 0.0000 0.375 172.2 0.0000 0.394 −0.193

1=d50 2.1 0.1436 0.219 51.0 0.0000 0.376 172.3 0.0000 0.396 −0.200

1=d250 5.1 0.0241 0.185 54.7 0.0000 0.346 152.1 0.0000 0.371 −0.188
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is not reported. The full data set contains 11,289 observations. For 50, 100 and 200 m bounds, there are
4433, 10,976 and 11,205 usable observations that have at least four neighbors within the distance
bound. A serious forest fire occurred near Kelowna during 2003 [34], and all analysis were also
conducted without 2003 data. No changes of note occurred.

Results for Lagrange multiplier tests that are robust to the alternate error structure, and a joint test
for both forms [3] are reported in the table. When estimated independently, the size of the spatial
error parameter ðλÞ varies inversely with the power on distance and is increasing in the distance band
width. The significance test is somewhat inconsistent. When the spatial lag ðρÞ is estimated, the test is
always highly significant. The value of ρ increases as the distance bound increases from 50 to 100, but
changes little thereafter. When the tests are performed jointly (SARMA), the lag parameter is little
changed while the error parameter often changes sign and is generally less stable.

We do not have an explicit theory of how neighbors influence each other in this setting, beyond
neighbors noticing each others’ water use. Given that ρ is relatively stable when the distance bound is
increased beyond 100 m, a distance bound of 100 is chosen. To more aggressively limit neighbor
influence, inverse squared distance is used. The average lot covers 974.6 m2, or if square is 31.2 m on a
side. A 100 m distance bound would seem to capture a large enough number of neighbors, an average
of 19.76, so that those who are significant are likely included. However, it is narrow enough that it
does not include an unreasonable number of neighbors. Using inverse distance squared also results in
the influence of neighbors falling off rapidly with distance, making closer neighbors more influential.
5.2. Regression results

Spatial lag and spatial Durbin models were also estimated using maximum likelihood. The spatial
lag parameter estimates range between 0.183 and 0.502, averaging 0.337 for the spatial lag specification.
For the spatial Durbin form, the spatial lag parameter estimates run from 0.164 to 0.578, with an average
of 0.326. Estimation issues with the Durbin form prevented the full set of variables being included in the
model, and in all cases a Shapiro–Wilkes [37] test for normality of the residuals was strongly violated,
rendering the assumptions of the maximum likelihood estimation suspicious. The GMM estimator used
here instruments for Wy using WX. Including WX as a regressor will therefore fully capture the effect
represented by the prediction of Wy, making it impossible to solve the Durbin form of the model.
However, on account of the distributional concerns, we report only the GMM results.

Given the results in Table 2, regressions were run with a spatial error alone (SAR), a spatial lag
alone (LAG), and with both a spatial error and a spatial lag (SARMA). Regression results are shown in
Table 3. Robust standard errors to allow for heteroskedasticity are reported for the LAG and SARMA
estimations, as implemented in spdep [8]. GMM is used for the spatial models as the combination of a
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large sparse weights matrix and fairly high collinearity between some of the variables prevented
maximum likelihood based approaches from converging. Using GMM also relaxes the normality
assumption that is necessary for maximum likelihood, which is appropriate given that a Shapiro test
for normality is rejected for all the models. Relaxing the normality assumption does mean that
conventional t tests cannot be conducted for the spatial error parameter λ, and other tests based on
the normality assumption likewise cannot be conducted. As such, only a few regression diagnostics
can be reported.

For summer water use, June, July and August, there is a strong and highly significant spatial lag.
With ρ¼ 0:497 in the SARMA model, almost half of the weighted average water use of the neighbors
of an average household is part of the predicted use of that household. With the assumptions outlined
earlier, this estimate for ρ means that a water saving impact at a particular house in effect generates
about the same savings again elsewhere throughout the CITY service area, through neighbor
influences.
Table 3
Average summer household water use regression results. Values in bold are significant at at least α¼ 0:01. Assess value in
millions of dollars, lot size and building area in hectares, age in decades, and elevation in kilometers above sea level.

Variable OLS GMM SAR GMM LAG GMM SARMA

β̂ P-val β̂ P-val β̂ P-val β̂ P-val

Intercept 2.8226 0.000 2.8243 0.000 1.4258 0.000 1.3728 0.000
Beds 2 −0.0633 0.168 −0.0713 0.111 −0.0805 0.076 −0.0739 0.092
Beds 3 0.0159 0.726 −0.0039 0.929 −0.0241 0.593 −0.0149 0.731
Beds 4 0.0037 0.937 −0.0147 0.744 −0.0319 0.487 −0.0230 0.603
Beds 5 0.0288 0.546 0.0109 0.815 −0.0009 0.985 0.0073 0.872
Beds 6 −0.0091 0.870 −0.0250 0.646 −0.0222 0.688 −0.0076 0.887
Beds 7 0.0227 0.766 0.0331 0.656 0.0500 0.503 0.0493 0.492
Beds 8+ −0.1990 0.073 −0.1556 0.149 −0.1148 0.431 −0.1276 0.370
Baths 2 0.1122 0.000 0.1021 0.000 0.0885 0.000 0.0873 0.000
Baths 3 0.1596 0.000 0.1397 0.000 0.1120 0.000 0.1132 0.000
Baths 4 0.1580 0.000 0.1377 0.000 0.1194 0.000 0.1225 0.000
Baths 5 0.1494 0.000 0.1381 0.001 0.1274 0.004 0.1266 0.003
Baths 6+ −0.0938 0.169 −0.0869 0.193 −0.0760 0.320 −0.0769 0.287
Assessed 0.1870 0.000 0.2135 0.000 0.1001 0.016 0.0835 0.026
Assessed2 −0.0857 0.000 −0.0873 0.000 −0.0678 0.000 −0.0622 0.000
Age 0.0791 0.000 0.0823 0.000 0.0555 0.000 0.0494 0.000
Age2 −0.0154 0.000 −0.0151 0.000 −0.0099 0.000 −0.0089 0.000
Lot ha 6.1299 0.000 5.6610 0.000 3.2875 0.000 3.1849 0.000

ðLot haÞ2 −10.7936 0.000 −9.7849 0.000 −6.1315 0.000 −6.0418 0.000
Bld ha 0.1982 0.000 0.1760 0.000 0.1393 0.000 0.1343 0.000

ðBld haÞ2 −0.0195 0.000 −0.0169 0.000 −0.0123 0.011 −0.0121 0.011
Pool 0.1380 0.000 0.1225 0.000 0.1142 0.000 0.1159 0.000
View 0.0132 0.477 −0.0052 0.800 −0.0197 0.275 −0.0094 0.550
Aspect N −0.0479 0.005 −0.0450 0.016 −0.0469 0.005 −0.0446 0.002
Aspect S −0.0088 0.571 −0.0164 0.319 −0.0147 0.315 −0.0092 0.479
Aspect W −0.0350 0.014 −0.0288 0.068 −0.0235 0.082 −0.0238 0.041
Assess� lot 1.0258 0.000 1.0220 0.000 0.8885 0.000 0.8287 0.000
Assess�Bld 0.0136 0.202 0.0117 0.276 0.0109 0.404 0.0114 0.351
Near Agr 0.0400 0.109 0.0556 0.075 −0.0002 0.995 −0.0024 0.904
Near GEID −0.0231 0.461 −0.0266 0.505 −0.0357 0.246 −0.0343 0.157
Slope −0.0250 0.000 −0.0240 0.000 −0.0171 0.000 −0.0162 0.000
Elevation 0.9193 0.000 1.0973 0.000 0.4340 0.000 0.3826 0.000
λ 0.2787 −0.2731
ρ 0.4746 0.000 0.4970 0.000

SSE 2352.6 2360.0 2183.8 2099.2
cor (y, ŷ) 0.6027 0.6019 0.6394 0.6578
R2 0.3632 0.3612 0.4089 0.4318
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The individual parameter estimates are largely in line with expectations. Note that in general we
expect the parameter estimates for the LAG and SARMA models to be smaller than for the OLS and
SAR models, as some of the influence of the independent variables will propagate through the spatial
lag process. Also, the variables have been scaled to generate conveniently sized parameters. Thus,
assessed value is in millions of dollars, lot size and building size in hectares, age in decades, and
elevation in kilometers above sea level. Univariate analysis suggested that the impact of the number of
beds and the number of baths was not linear, so dummy variables were used to represent the different
numbers of rooms.

The quadratic terms for assessed value, age, lot size and building size imply that the water use
function is curved. For assessed values above about $900,000, water use falls with further increases in
assessed value, all else equal. Only 5.4% of homes are assessed above this, so few homes fall into the
area where water use is declining. For houses more than 2.72 decades old, water use declines with
further age. This is consistent with older homes more likely renovated than middle aged homes [26].
Water use is increasing in lot area until lot area exceeds on average 0.276 ha. Only 1.6% of households
fall into this range. Finally, for building size, water is increasing in building size over the entire
relevant range.

The two neighboring use influence variables, near agriculture and near GEID, are not significant,
and near GEID has the wrong sign. However, as there are only 233 near GEID observations and 376
near agriculture observations, the insignificance may be due to a lack of observations. The spatial lag
term is strongly significant, both when the model is estimated only with a spatial lag process (LAG)
and when it is estimated with a spatial lag and spatial error process (SARMA). As pointed out by
Manski [25], this spatial effect need not reflect mimicry. Running a Durbin form of these models and
solving by maximum likelihood does not eliminate the presence of a spatial lag effect. However, the
data is inadequate to differentiate between a true endogenous effect and due to spatially correlated
but unobserved shocks.

The winter results (available on request) confirm many of the summer results. In winter, lot size
ceases to be significant, except where interacted with assessed value. This is consistent with summer
use being driven by landscape watering, which is not needed in the winter. The diagnostic tests using
different spatial weight matrices show evidence for a spatial process (Moran's I). However, the spatial
effects are also far weaker, with the spatial lag parameter estimate, ρ, insignificant for both the LAG
and SARMA specifications. Further, little explanatory power is added by including the spatial error
structure.

The winter and summer results described were estimated assuming independence. In principle, a
more sophisticated relationship could be modeled where summer water use impacts on winter water
use. Such a model would enable testing if more prolific summer water use is associated with more
prolific winter water use. Construction and evaluation of such a spatial simultaneous system is left to
further work. That such a process may exist is suggested by the fact that there is a strong correlation
between the summer and winter residuals for the SARMA regressions (r¼0.286, Po2:2� 10−16).
5.3. Prediction

The existence of a spatial lag process creates a policy opportunity, stemming from the fact that a
water saving innovation at one place will have spillover effects on neighboring properties. This spatial
spillover effect is analogous to the propagation of impacts from a shock in an autoregressive model.
The aggregate spillover effect can be maximized by choosing where the innovations take place. To the
extent that such choices are possible, policy makers can take advantage of the tendency to mimicry
and encourage innovations that are optimally distributed.

The spatial regressions estimate the spatial lag term to lie between 0.45 and 0.50. We consider a
stylized neighborhood of 49 identical residences on a 7�7 grid, with ρ¼ 0:5 and λ¼ 0. The prediction
model that follows from the spatial regression is

ŷ ¼ ðI−ρWÞ−1Xβþ ðI−ρWÞ−1 ̂ϵ ð6Þ
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when λ¼ 0 is imposed and the disturbance is estimated as ̂ϵ. Define Δϵ to be an innovation pattern,
where elements of Δϵ equal one for locations where an innovation occurs and zero elsewhere. With
identical households, the impact of an innovation pattern Δϵ is given by

Δy¼ ðI−ρWÞ−1Δϵ ð7Þ
with total impact as the sum of the elements of Δy. The optimal innovation pattern Δϵn is that pattern
where i′Δy is maximized.

Estimation requires choosing a spatial weights matrix. Prediction requires a spatial weights matrix
and some further assumptions about how the spatial effects propagate. One question is whether the
innovations interact with each other. We consider three cases: (a) raw, where innovations can build
on each other, (b) trimmed, where all resultant impacts that exceed one are forced equal to one, and
(c) scaled, where all resultant impacts are scaled back so that the largest impact is equal to one.

Another question is whether the row standardization used for estimation purposes is too strong a
behavioral assumption. An alternative is to standardize the entire spatial matrix, which would allow
households with more neighbors to have a greater propagation of spillover effects than ones with few
neighbors. Finally, in this particular case where ρ̂ was fairly stable for different distance weighting
schemes, it is also interesting to examine how the aggregate spillovers and the optimal distribution of
innovations varies as the weighting scheme is changed.

Using a 7�7 grid, we identified the spillover minimizing and spillover maximizing innovation
pattern for various combinations of these alternative spatial structures. Since Δϵ enters linearly, the
relative impacts of innovations are scale invariant. We therefore explore the effect of different
weighting matrices and different scaling processes on the distribution of innovations by exploring
how total impact changes as the pattern of innovation across the neighborhood changes. For k
innovations, a pattern of innovation is represented by setting k elements of Δϵ equal to one while
leaving the remaining values equal to zero. The number of unique combinations is nðn−1Þ…ðn−kþ 1Þ.
A short segment of recursive code was written in R Development Core Team [35] that allows any
arbitrary value of k to be examined. However, the rapid increase in the number of cases to explore
meant that the grid was kept at 7�7 and the number of innovations as k¼2 and k¼4.

Twenty-four combinations of distance weighting, spatial weights normalization, and innovation
scaling were examined to identify the spatial patterns that maximize and minimize aggregate water
savings. Fig. 4 plots the spatial patterns that minimize aggregate water savings, while Fig. 5 plots those
that maximize it. See Appendix Table A1 for details. In general, aggregate water savings are minimized
when innovations occur near the edge. When innovations multiply each other's effect, then the
minimum effect occurs when innovations are widely spaced. In contrast, when they do not build on
each other, clustering the innovations near the edge minimizes the total spillover effect.

The situation is essentially the opposite when maximizing aggregate water savings. When
innovations compound each other, then the optimum clusters them near the center of the space.
However, if they do not, then it is optimal to provide more space between innovations.

The difference in the aggregate spillover can be substantial (see Appendix Table A1). The savings
maximizing pattern typically at least doubles the savings from the initial innovations alone, while
the savings minimizing pattern adds less than 50%. Choosing the best pattern commonly triples
1,3,7,9,11,13,19,21     5,15,17,23   2,8,10,14,20   6,12,16,22

Fig. 4. Spatial patterns generating minimum aggregate water savings. Numbers in panel headings reference case numbers in
Table A1. Innovations occur at black points with diamond inset. Shading reflects size of spillover innovation.



1,7 13,15,17,21,23 3,9 2,8

14,16,18,20,22,24 4,10 6 12

Fig. 5. Spatial patterns generating maximum aggregate water savings. Numbers in panel headings reference case numbers in
Table A1. Innovations occur at black points with diamond inset. Shading reflects size of spillover innovation.
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the spillover benefit relative to the worst pattern. Thus, if a manager can choose where the
innovations occur, there is scope to choose a pattern that maximizes total water savings.

These results demonstrate that if a city manager can choose where water saving innovations occur,
then provided they know how the spatial effects of those innovations are propagated, the manager
can choose a spatial pattern that maximizes aggregate water savings. However, in reality managers
are typically making choices absent definitive knowledge about these spatial propagation processes.
The best pattern is that one which maximizes the aggregate spillover water savings, conditional on
the spatial process being unknown.

Table 4 reports the relative impact of being wrong. Each row in the table contains the ratios of the
water savings realized when the optimal spatial pattern for that structure is applied to the spatial
structures identified by the column headings. As an equation, each entry is

∑fAðQAϵ
n

EÞ ∑fAðQAϵAÞ= ð8Þ
where subscripts E and A indicate expected and actual, fA is the scaling function that applies, and
QA ¼ ðI−ρWÞ−1.

To interpret the table, consider the first row. All entries on this row are calculated assuming that
the spatial weights matrix is matrix standardized, inverse squared distance, and innovations can
compound each other (Raw). When this is the true spatial structure, spillover benefit is 100% of that
possible. However, if it is not, then the actual gain is less than it could be. When the actual structure
is row standardized with innovations scaled so that the maximum total innovation is equal to one
(Scale), then the actual spillover benefit is only 68.3% of what it could be. Each row is likewise
interpreted, but for the different assumed spatial structure. The overall result evident from Table 4 is
that if one is unsure of the spatial structure, one is best off to assume that row standardization is an
appropriate representation.

Finally, it must be borne in mind that the spatial weights matrix, the method of standardization
and the way that innovations are compounded is intended to capture the essence of underlying social
relationships that impact on behavior. Any choice of spatial structure implies a set of assumptions
about the way people interact. The safest assumption to make, based on the results in Table 4, is that
people are subject to the same total amount of influence from their neighbors, independent of the
number of such neighbors they interact with. When this assumption is true, one does not need to



Table 4
Relative impact for incorrect spatial weights. Rows represent assumed spatial structure and columns are actual spatial
structure. Row identities are identical to column identities. Table entries are the ratio of the water saving using the optimal
spatial pattern for the assumed structure relative to the water savings if the optimal pattern for the actual structure had been
used. Spatial weights are matrix or row standardized, and cumulative effects are raw, trimmed or scaled.

wd ¼ ð1=dÞ2 wd ¼
ffiffiffiffiffiffiffiffi
1=d

p

Matrix standard Row standard Matrix standard Row standard

Case Raw Trim Scale Raw Trim Scale Raw Trim Scale Raw Trim Scale
1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.901 0.762 0.877 0.778 0.683 1.000 0.923 0.819 0.842 0.761 0.699
2 0.987 1.000 0.998 0.888 0.878 0.876 0.983 1.000 0.998 0.857 0.847 0.848
3 0.935 0.971 1.000 0.940 0.942 0.948 0.918 0.962 0.998 0.922 0.925 0.933
4 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
5 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
6 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
7 1.000 0.901 0.762 0.877 0.778 0.683 1.000 0.923 0.819 0.842 0.761 0.699
8 0.987 1.000 0.998 0.888 0.878 0.876 0.983 1.000 0.998 0.857 0.847 0.848
9 0.961 0.986 0.999 0.914 0.910 0.905 0.950 0.983 1.000 0.890 0.886 0.881

10 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
11 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
12 0.891 0.928 0.962 1.000 1.000 1.000 0.865 0.910 0.954 1.000 1.000 1.000
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know if or how the innovations compound. However, if in reality people are influenced to a different
degree if they have more or less neighbors, then the maximum additional spillover will be attained.
Fortunately, the loss is relatively small, as compared to making any other assumption about the social
relations.

To summarize, we began by testing a number of different spatial structures, and showed that for
inverse distance style spatial weights, the spatial lag estimates are quite stable for distance bands of
100 m or larger. Using an inverse square distance spatial weights matrix, we estimated a set of spatial
regression models for water use. Overall, the variables that predict water use are as expected. The
regressions generate estimates for the spatial lag parameter that lie close to 0.5, which we use as the
value for ρ to construct a set of predictions for different spatial patterns of water saving innovations.
We show that the spatial pattern of innovations can have a substantial effect on the aggregate water
savings, on account of the spillovers implied by the existence of a spatial lag process. Finally, we show
that when one does not know how these spatial social effects impact on behavior, assuming that the
total impact on each individual is about the same is relatively safe, compared to some other possible
assumptions. This implies that the second best spatial pattern of innovations spreads the innovations
widely around the community.
6. Discussion

We have shown that taking advantage people's tendency to mimic the behavior of their neighbors
can enhance the effectiveness of water conservation efforts. There are an assortment of ’cash for grass’
programs that pay residents a subsidy to remove grass and replace it with water conserving land-
scaping (see for example [38]). These programs generally allow anyone in a relatively large area to
apply for a subsidy. The tendency to mimic implies that neighborhoods where one person chooses
to convert their yard are more likely to see others do the same. Therefore, subsidy requests will tend
to be spatially clustered. This limits the spillover benefits. Likewise, neighborhoods where no
one has taken a chance on water saving landscaping are less likely to avail themselves of the subsidy.
A community could take advantage of these neighbor effects by allocating subsidy dollars by
neighborhood or some other spatial division. Similarly, program staff could directly target individual
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households in areas dominated by heavy water using landscaping. Introducing an innovation may
lead to spillover mimicry which would not occur if the dominant pattern is not actively disrupted.
Targeting efforts to support early adopters is a common strategy when policy seeks to encourage
technology diffusion (see for example [40]).

The tendency to mimicry may also imply that complaint driven enforcement efforts should be
spatially targeted. The neighbor effect means that people who are neighbors of households that
violate water use restrictions are more likely to be violating these restrictions themselves. This
suggests that where there are resources for some random inspections, inspection efforts should be
targeted at neighborhoods where violations are rare and/or average water use is high.

There are a number of limitations to the current study. Chief among these is the fact that the
mechanism for social influence is not known. The assumption that people are influenced principally
by those who live in physical proximity is a strong assumption. Assuming that nearby houses are
influential can be justified because home owners are likely to see their neighbors yards, and at least
part of the spatial correlation can be attributed to such influences. However, other elements of a home
owners social connections may be far more influential. Identifying the dominant social relations and
how they interact with other variables such as the price of water is left for further work.

There are of course a number of additional variables that may be important. More detail about
landscaping choices may help explain variations in water use. Correlations in landscaping may explain
correlations in water use. However, as changing landscaping choices is already a policy target, the
conclusions and policy advice of the present work still apply. Other variables such as soil type may
also be important in explaining why households behave like their neighbors. Spatial patterns may also
be a consequence of city regulations that in recent times have seen smaller lots and an emphasis on
water conservation. Finally, there may also be an inherent selection bias, as home owners choose to
move into neighborhoods that reflect their landscaping preferences, with residents who value water
conservation likely to locate in neighborhoods with more water conserving landscaping.

The impact of landscaping choices goes beyond water use and aesthetics. Landscaping choices can
be key contributors to habitats in residential areas. Several authors [22,24,23,32,31,29] have suggested
incentive based policies that are spatially coordinated to enhance urban environments. Typically,
these involve a higher conservation incentive near a critical habitat or where connectivity and patch
size are important. Spatial correlations in land use or conversion probabilities may reduce or increase
conservation costs. If owners respond positively to neighboring protection – perhaps enhanced
through public recognition – then conservation costs may be reduced. Alternatively, if conservation of
one parcel increases the risk of conversion of adjacent sites – residential development seeking to
about a park or protected area – then spatial correlation may be increasing costs. This latter effect has
been noticed in hedonic pricing studies [7,10].
7. Conclusion

Spatial econometric analysis finds strong evidence for spatial correlation in residential water use in
Kelowna, British Columbia. This effect is in addition to the normal observation that more water is used
on larger lots, by occupants of larger homes, and when there are more ways to use water (bathrooms,
having a pool, etc.). There may be scope to maximize aggregate water savings by taking advantage
of this spatial effect. Conditional on knowing the spatial process, the best pattern of innovations can
generate more than three times the spillover water savings than the worst pattern. Geographically
based targeting of water conservation incentives may be an effective tool because it can give more
residents ‘water conservation heros’ as neighbors that they may emulate.
Acknowledgments

This research was funded in part by the Social Science and Humanities Research Council of Canada.
I am particularly grateful to Peter Lomas for his diligent work in preparing the data. I am also grateful
to their viewers for their suggestions. Any remaining errors are my own.



Table A1
Minimum and maximum water savings as a function of spatial weights and innovation scaling. Weights matrix based on
inverse distance squared or inverse square root distance, with row or matrix standardization. Innovation impacts are raw,
trimmed to not exceed innovation size, or scaled to all lie below innovation.

No. wd Scaling k Minimum Maximum Diff. Ratios

Value Mult. Value Mult. Diff. Mult.

Matrix standard
1 ð1=dÞ2 Raw 2 2.953 1.477 5.022 2.511 2.069 0.7006 3.171
2 4 5.907 1.477 10.018 2.505 4.111 0.6961 3.156
3 Trim 2 2.895 1.445 4.772 2.386 1.877 0.6485 3.097
4 4 5.659 1.415 9.272 2.318 3.613 0.6384 3.178
5 Scale 2 2.777 1.389 4.529 2.265 1.752 0.6309 3.255
6 4 4.974 1.244 8.582 2.146 3.608 0.7254 4.704
7

ffiffiffiffiffiffiffiffi
1=d

p
Raw 2 2.884 1.442 5.255 2.628 2.371 0.8221 3.682

8 4 5.769 1.442 10.472 2.618 4.704 0.8154 3.659
9 Trim 2 2.840 1.420 4.985 2.493 2.144 0.7550 3.554

10 4 5.680 1.420 9.603 2.401 3.923 0.6906 3.335
11 Scale 2 2.822 1.411 4.691 2.346 1.869 0.6622 3.274
12 4 5.097 1.274 8.802 2.201 3.706 0.7270 4.377
Row standard
13 ð1=dÞ2 Raw 2 3.172 1.586 4.657 2.329 1.486 0.4685 2.267
14 4 6.343 1.586 9.315 2.329 2.972 0.4685 2.268
15 Trim 2 2.981 1.491 4.514 2.257 1.534 0.5145 2.563
16 4 5.550 1.388 9.022 2.256 3.472 0.6257 3.240
17 Scale 2 2.676 1.338 4.347 2.174 1.671 0.6243 3.472
18 4 4.449 1.112 8.679 2.170 4.230 0.9507 10.421
19

ffiffiffiffiffiffiffiffi
1=d

p
Raw 2 3.010 1.505 4.912 2.456 1.902 0.6317 2.883

20 4 6.020 1.505 9.823 2.456 3.803 0.6317 2.883
21 Trim 2 2.902 1.451 4.760 2.380 1.858 0.6402 3.060
22 4 5.525 1.381 9.510 2.380 3.984 0.7211 3.613
23 Scale 2 2.713 1.357 4.565 2.283 1.853 0.6829 3.597
24 4 4.500 1.125 9.109 2.277 4.609 1.0243 10.218
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Appendix A. Water savings and innovation patterns

See Tabel A1.

References

[1] C.K. Aitken, H. Duncan, T.A. McMahon, A cross-sectional regression analysis of residential water demand in Melbourne,
Australia, Applied Geography 11 (1991) 157–165.

[2] L. Anselin, Spatial Econometrics: Methods and Models. Studies in Operational Regional Science, Kluwer Academic
Publishers, 1988.

[3] L. Anselin, A.K. Bera, R. Florax, M.J. Yoon, Simple diagnostic tests for spatial dependence, Regional Science and Urban
Economics 26 (1996) 77–104.

[4] L. Anselin, R. Florax, S. Rey, (Eds.), Advances in Spatial Econometrics, Springer, 2004.
[5] G. Arbia, B. H. Baltagi, (Eds.), Spatial Econometrics: Methods and Applications, Physica-Verlag, Heidelberg, 2009.
[6] F. Arbués, M. Ángeles García-Valiñas, R.M.-E. neira, Estimation of residential water demand: a state-of-the-art review,

Journal of Socio-Economics 32 (1) (2003) 81–102. 〈http://www.sciencedirect.com/science/article/B6W5H-483BY57-1/2/
e1b7bbfa827c3ad935b7298f4feb8cdd〉.

[7] J.C. Bergstrom, R.C. Ready, What have we learned from over 20 years of farmland amenity valuation research in north
america? Applied Economic Perspectives and Policy 31 (Spring (1)) (2009) 21–49. 〈http://aepp.oxfordjournals.
org/content/31/1/21.abstract〉.

[8] R. Bivand, with contributions by Micah Altman, L. Anselin, R.A. ao, O. Berke, A. Bernat, G. Blanchet, E. Blankmeyer,
M. Carvalho, B. Christensen, Y. Chun, C. Dormann, S. Dray, R. Halbersma, E. Krainski, P. Legendre, N. Lewin-Koh, H. Li, J. Ma,
G. Millo, W. Mueller, H. Ono, P. Peres-Neto, G. Piras, M. Reder, M. Tiefelsdorf, D. Yu., spdep: Spatial dependence: weighting
schemes, statistics and models, R package version 0.5–29, 2011. 〈http://CRAN.R-project.org/package=spdep〉.

[9] L.E. Blume, S.N. Durlaf, Identifying Social Interactions: A Review, Technical Report, Cornell University, July 2005.

http://www.sciencedirect.com/science/article/B6W5H-483BY57-1/2/e1b7bbfa827c3ad935b7298f4feb8cdd
http://www.sciencedirect.com/science/article/B6W5H-483BY57-1/2/e1b7bbfa827c3ad935b7298f4feb8cdd
http://aepp.oxfordjournals.org/content/31/1/21.abstract
http://aepp.oxfordjournals.org/content/31/1/21.abstract
http://CRAN.R-project.org/package=spdep


J. (John) Janmaat / Water Resources and Economics 1 (2013) 3–1918
[10] L.M. Brander, M.J. Koetse, The value of urban open space: meta-analyses of contingent valuation and hedonic pricing
results, Journal of Environmental Management 92 (10) (2011) 2763–2773. 〈http://www.sciencedirect.com/science/article/
pii/S0301479711002167〉.

[11] L. Corrado, B. Fingleton, Where is the economics in spatial econometrics? Journal of Regional Science 52 (2) (2012)
210–239. 〈http://dx.doi.org/10.1111/j.1467-9787.2011.00726.x〉.

[12] J.M. Dalhuisen, R.J.G.M. Florax, H.L.F. deGroot, P. Nijkamp, Price and income elasticities of residential water demand: a
meta-analysis, Land Economics 79 (May (2)) (2003) 292–308.

[13] J. Franczyk, H. Chang, Spatial analysis of water use in Oregon, USA, 1985–2005, Water Resources Management 23 (2009)
755–774.

[14] M.A. Goddard, T.G. Benton, A.J. Dougill, Beyond the garden fence: landscape ecology of cities, Trends in Ecology and
Evolution 25 (4) (2010) 202–203.

[15] C. Helmers, M. Patnam, Does the rotten child spoil his companion? spatial peer effects among children in rural india,
Discussion Paper 59, Spatial Economics Research Center, Cambridge, UK, October 2010.

[16] S.P. Henderson, N.H. Perkins, M. Nelischer, Residential lawn alternatives: a study of their distribution, form and structure,
Landscape and Urban Planning 42 (1998) 135–145.

[17] J. Iverson Nassauer, Z. Wang, E. Dayrell, What will the neighbours think? Cultural norms and ecological design, Landscape
and Urban Planning 92 (2009) 282–292.

[18] M. Julien, J. Zmyslony, Why do landscape clusters emerge in an organized fashion in anthropogenic environments?
Landscape Research 26 (4) (2001) 337–350.

[19] J. Kirkpatrick, G. Daniels, A. Davison, An antipodean test of spatial contagion in front garden character, Landscape and
Urban Planning 93 (2009) 103–110.

[20] K.L. Larson, D. Casagrande, S.L. Harlan, S.T. Yabiku, Residents' yard choices and rationales in a desert city: social priorities,
ecological impacts, and decision tradeoffs, Environmental Management 44 (2009) 921–937.

[21] J. LeSage, R.K. Pace, Introduction to Spatial Econometrics, CRC Press, New York, 2009.
[22] D.J. Lewis, A.J. Plantinga, Policies for habitat fragmentation: combining econometrics with gis-based landscape

simulations, Land Economics 83 (May (3)) (2007) 109–127.
[23] D.J. Lewis, A.J. Plantinga, E. Nelson, S. Polasky, The efficiency of voluntary incentive policies for preventing biodiversity loss,

Resource and Energy Economics 33 (2011) 192–211.
[24] D.J. Lewis, A.J. Plantinga, J. Wu, Targeting incentives to reduce habitat fragmentation, American Journal of Agricultural

Economics 91 (November (4)) (2009) 1080–1096.
[25] C.F. Manski, Identification of endogenous social effects: the reflection problem, The Review of Economic Studies 60 (July

(3)) (1993) 531–542.
[26] K. Millock, C. Nauges, Household adoption of water-efficient equipment: the role of socio-economic factors, environmental

attitudes and policy, Environmental and Resource Economics 46 (2010) 539–565.
[27] J. Nelson, Valuing rural recreation amenities: hedonic prices for vacation rental houses at deep creek lake, maryland,

Agricultural Resource Economics Review 39 (3) (2010) 485.
[28] N.R. Netusil, Urban environmental amenities and property values: does ownership matter?, Land Use Policy 31 (0) (2013)

371–377. Themed Issue 1-Guest Editor Romy GreinerThemed Issue 2—Guest Editor Davide Viaggi. 〈http://www.
sciencedirect.com/science/article/pii/S0264837712001408〉.

[29] D.A. Newburn, P. Berck, A.M. Merenlender, Habitat and open space at risk of land-use conversion: targeting strategies for
land conservation, American Journal of Agricultural Economics 88 (2006) 28–42.

[30] R. Pandit, M. Polyakov, S. Tapsuwan, T. Moran, The effect of street trees on property value in perth, Western Australia,
Landscape and Urban Planning 110 (0) (2013) 134–142. 〈http://www.sciencedirect.com/science/;article/pii/
S016920461200299X〉..

[31] G.M. Parkhurst, J.F. Shogren, Spatial incentives to coordinate contiguous habitat, Ecological Economics 64 (2007) 344–355.
[32] G.M. Parkhurst, J.F. Shogren, C. Bastian, P. Kivi, J. Donner, R.B. Smith, Agglomeration bonus: an incentive mechanism to

reunite fragmented habitat for biodiversity conservation, Ecological Economics 41 (2002) 305–328.
[33] T. Plumper, E. Neumayer, Model specification in the analysis of spatial dependence, European Journal of Political Research

49 (May (3)) (2010) 418–442.
[34] Protection Branch, Fire Review Summary for Okanagan Mountain fire, Technical Report K50628, British Columbia Ministry

of Forests, Victoria, British Columbia, 2003. 〈http://bcwildfire.ca/History/ReportsAndReviews/2003/Okanagan_Fire_Review_
K50628.pdf〉.

[35] R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2010, ISBN 3-900051-07-0. 〈http://www.R-project.org/〉.

[36] M. Ramachandran, Three Essays in the Economics of Suburban Water Demand: A Spatial Panel Data Analysis of Residential
Outdoor Water Demand. Ph.D. Thesis, Clark University, 2010.

[37] P. Royston, An extension of Shapiro and Wilk's w test for normality to large samples, Applied Statistics 31 (1982) 115–124.
[38] Southern Nevada Water Authority, February 2013, Water smart landscapes rebate. 〈http://www.snwa.com/rebates/wsl.

html〉.
[39] Statistics Canada, Human Activity and the Environment, Technical Report 16-201-XIE, 2003.
[40] D. Sunding, D. Zilberman, The agricultural innovation process: research and technology adoption in a changing agricultural

sector, in: B.L. Gardner, G.C. Rausser (Eds.), Handbook of Agricultural Economics, vol. 1, Elsevier 2001, pp. 207–261.
Ch. 4 〈http://ideas.repec.org/h/eee/hagchp/1-04.html〉.

[41] P. Troy, D. Holloway, The use of residential water consumption as an urban planning tool: a pilot study in Adelaide, Journal
of Environmental Planning and Management 47 (1) (2004) 97–114.

[42] P.S. Warren, S.B. Lerman, Plants of a feather: spatial autocorrelation of gardening practices in suburban neighbourhoods,
Biological Conservation 141 (2008) 3–4.

[43] E.A. Wentz, P. Gober, Determinants of small-area water consumption for the city of Phoenix, Arizona, Water Resources
Management 21 (2007) 1849–1863.

http://www.sciencedirect.com/science/article/pii/S0301479711002167
http://www.sciencedirect.com/science/article/pii/S0301479711002167
dx.doi.org/http://dx.doi.org/10.1111/j.1467-9787.2011.00726.x
http://www.sciencedirect.com/science/article/pii/S0264837712001408
http://www.sciencedirect.com/science/article/pii/S0264837712001408
http://www.sciencedirect.com/science/article/pii/S016920461200299X
http://www.sciencedirect.com/science/article/pii/S016920461200299X
http://bcwildfire.ca/History/ReportsAndReviews/2003/Okanagan_Fire_Review_K50628.pdf
http://bcwildfire.ca/History/ReportsAndReviews/2003/Okanagan_Fire_Review_K50628.pdf
http://www.R-project.org/
http://www.snwa.com/rebates/wsl.html
http://www.snwa.com/rebates/wsl.html
http://ideas.repec.org/h/eee/hagchp/1-04.html


J. (John) Janmaat / Water Resources and Economics 1 (2013) 3–19 19
[44] A.C. Worthington, M. Hoffman, An empirical survey of residential water demand modelling, Journal of Economic Surveys
22 (5) (2008) 842–871.

[45] J.E. Zabel, D. Guignet, A hedonic analysis of the impact of lust sites on house prices, Resource and Energy Economics 34 (4)
(2012) 549–564. 〈http://www.sciencedirect.com/science/article/pii/S0928765512000395〉.

[46] J. Zmyslony, D. Gagnon, Residential management of urban front-yard landscape: a random process?, Landscape and Urban
Planning 40 (1998) 295–307.

[47] J. Zmyslony, D. Gagnon, Path analysis of spatial predictors of front yard vegetation in an anthropogenic environment,
Landscape Ecology 15 (2000) 371–375.

http://www.sciencedirect.com/science/article/pii/S0928765512000395

	Spatial patterns and policy implications for residential water use: An example using Kelowna, British Columbia
	Introduction
	Background
	Model
	Data
	Results
	Spatial structure
	Regression results
	Prediction

	Discussion
	Conclusion
	Acknowledgments
	Water savings and innovation patterns
	References




